
Integration of a systolic array based hardware
accelerator into a DNN operator auto-tuning

framework
Federico Nicolás Peccia

FZI Research Center for Information Technology
Karlsruhe, Germany

peccia@fzi.de

Oliver Bringmann
University of Tübingen

Tübingen, Germany
oliver.bringman@uni-tuebingen.de

Abstract—The deployment of neural networks on heteroge-
neous SoCs coupled with custom accelerators is a challenging task
because of the lack of end-to-end software tools provided for these
systems. Moreover, the already available low-level schedules and
mapping strategies provided by the accelerator developers for
typical tensor operations are not necessarily the best possible ones
for each particular use case. This is why frameworks which auto-
matically test the performance of the generated code on a specific
hardware configuration are of special interest. In this work, the
integration between the code generation framework TVM and the
systolic array-based accelerator Gemmini is presented. A generic
schedule to offload the GEneral Matrix Multiply (GEMM) tensor
operation onto Gemmini is detailed, and its suitability is tested
by executing the AutoTVM tuning process on it. Our generated
code achieves a peak throughput of 46 giga-operations per second
(GOPs) under a 100 MHz clock on a Xilinx ZCU102 FPGA,
outperforming previous work. Furthermore, the code generated
by this integration was able to surpass the default hand-tuned
schedules provided by the Gemmini developers in real-world
workloads.

Index Terms—RISC-V, FPGA, TVM, Gemmini, Accelerator,
Code Generation

I. INTRODUCTION

Heterogeneous SoCs generators like Chipyard [1] or
HEROv2 [2] are quickly being adopted for an increasing
amount of use cases thanks to their great adaptability. This
kind of generator exposes an enormous amount of possible
configurations to the user, thus enabling the generation of
SoCs tailor-made for specific applications. Thanks to the open
nature of these projects, hardware accelerators like Gemmini
[3], VTA [4] or NVDLA [5] are being developed to offload
specific workloads from the CPU, allowing the deployment of
complex algorithms onto edge platforms.

Although the developers of these accelerators normally
provide hand-tuned kernels to offload commonly used tensor

The research leading to these results was supported by the Compe-
tence Center Karlsruhe for AI Systems Engineering (CC-KING https://www.
ai-engineering.eu) sponsored by the Ministry of Economic Affairs, Labour and
Tourism Baden-Württemberg. It was conducted within the project KIsSME
(Artificial Intelligence for selective near-real-time recordings of scenario and
manoeuvre data in testing highly automated vehicles, Grant No. 19A20026C),
funded by the German Federal Ministry for Economic Affairs and Climate
Action.

operations into the accelerator, the high configurability of these
SoC generators becomes a problem: there is no guarantee that
these default schedules will provide the best throughput across
all possible SoC configurations.

This is why automatic code generation and evaluation tools
are becoming increasingly popular [6], [7], [8]. These present
enormous advantages, as they can easily generate different
mapping options for each tensor operator and test them to
automate the process of finding the best schedule parameters
given a particular SoC configuration (a process known as
auto-tuning). By measuring on a physical hardware platform,
the impact of other system components on the accelerator’s
operation is also taken into account.

To demonstrate the advantages of this auto-tuning process
for hardware accelerators, this work presents the integration
of the Gemmini accelerator into the TVM deployment frame-
work. The paper is organized as follows: first, a scheduling
search space for a GEMM operation on a generic systolic array
accelerator is proposed in Section II. Then, Section III presents
the integration of the Gemmini accelerator into the TVM
framework. 1. Finally, Section IV compares the auto-tuning
of different GEMM workloads against a reference implemen-
tation [9], and demonstrates that our scheduling definition
achieves improvements in terms of giga-operations per second
(GOPs) for all workloads. The measurements are expanded by
presenting the autotuning results for operators extracted from
the Baidu DeepBench Workloads, outperforming the default
handcrafted kernels provided by the Gemmini developers.

II. SCHEDULING A GEMM OPERATION ON A SYSTOLIC
ARRAY

In 1982, Kung [10] presented the advantages of systolic ar-
ray architectures for the execution of matrix operations. These
have been especially attractive to accelerate neural network
operators because of their high data reuse. Several accelerators
were built using systolic arrays (or similar processing element
distributions) as its core [11], [12], [13], [14], [15], [16].

1As of the date of submission of this paper, the merging of this integration
into the main TVM branch is still in progress

https://www.ai-engineering.eu
https://www.ai-engineering.eu

Schedule parameters
tilem,n,k

parallel_accumulations

apply_double_buffer

exchange_axis
WS/OS

mvout_big_block

Code generation
framework

Accelerator parameters

Scratchpad size
Accumulator size

DIM
Instructions constraints

(a)

1: config.accel()
2: for io = 0 to (M/tilem1

) − 1 do
3: for jo = 0 to (N/tilen1) − 1 do
4: move.in(D′)
5: for ko = 0 to (K/tilek1

) − 1 do
6: move.in(A′)
7: move.in(B′)
8: for ii = 0 to (tilem1

/tilem2
) − 1 do

9: for ji = 0 to (tilen1/tilen2) − 1 do
10: for ki = 0 to (tilek1

/tilek2
)− 1 do

11: gemm.DIMxDIM(C′ ,A′ ,B′)
12: end for
13: end for
14: end for
15: end for
16: for ii = 0 to (tilem1

/tilem2
) − 1 do

17: for ji = 0 to (tilen1/tilen2) − 1 do
18: move.out(C′)
19: end for
20: end for
21: end for
22: end for

(b)

D

A BM

C

K

K

N

M

N

tilem1

tilek1

tilen1

tilem1

tilen1

tilek1

tilem1

tilen1

tilek2

tilek2

tilen2

tilem2

M

N

A'

B'

C'

A'
B'

D' tilen2

tilem2

DIMxDIM
Systolic
Array

DRAM SCRATCHPAD
(SRAM)

DRAMACCUMULATOR
(SRAM)

(c)

Figure 1: (a) shows the proposed GEMM schedule parameters for an accelerator based on a DIM ×DIM systolic array able
to execute a generic GEMM with form C = A×B +D. (b) shows an example generated pseudocode for the operation, and
(c) shows a graphical representation of the move of data in and out of the accelerator.

To correctly schedule a tensor operation on a hardware
accelerator, one should be aware of the kind of instructions
provided by the accelerator. These can be classified into two
distinct categories:
• Low level: these instructions allow the programmer fine

control of the behaviour of the accelerator. These are
typically instructions that enable moves of data in and
out of the accelerator’s internal memory, and others that
execute/dispatch the most basic supported computation.
An example of this kind of instructions can be found on
the Angel-Eye [17] or the VTA [4] accelerators.

• Layer wide: these instructions take care of the burden of
managing the individual instructions, by exposing to the
programmer a higher-level interface to execute an entire
tensor operation, like the NVDLA [5].

For a systolic array-based accelerator, we are interested
in the first kind of instructions, because they allow the
programmer or the tuning software fine-grained control over
the generated schedules. To correctly schedule them, the code
generator framework should take these 4 factors into account:

1) Configuration of the hardware: these instructions should
be generated only when the configuration of the accel-
erator changes, and not on each new operator, to avoid
unnecessary reconfigurations.

2) Move of data into the accelerator’s SRAM: if the input
matrices fit entirely on the accelerator’s internal memory,
one could choose to first move the entire matrices in,
and only then start to generate the compute instructions.
But perhaps interleaving move and compute instructions
can actually avoid idle times and thus generate faster
compute schedules. The proposed schedule should be
able to achieve this load balancing between different
kinds of instructions.

3) Computation: the idle time of the systolic array should
be minimized. There should always be data available in
the accelerator’s SRAM for the systolic array to use for

its computation.
4) Move of data out into the external DRAM: two different

options could be chosen when generating these instruc-
tions: either patches of results are moved out as soon
as they are ready, or multiple patches are stored in the
accumulator before bulk moving all of them out.

To limit the explosion of the schedule parameter search
space, certain hardware limitations and basic assumptions can
be taken into account during this stage:

• Schedules which do not respect the maximum limitation
of columns and rows for each move should automatically
be dropped.

• The schedule cannot generate configurations where data
would overflow the accelerator’s SRAM: hardware infor-
mation should be used as a limit for the generated move
instructions source and destination addresses.

• Each generated GEMM should try to utilize the systolic
array to its full extent, to prevent idle processing ele-
ments.

The configuration parameters of the proposed schedule
presented in Fig. 1 along with the accelerator parameters
can effectively generate code that considers all the previous
mentioned points:

• tilem,n,k: two-level tiling for each corresponding com-
putation axis. The first level moves data into the acceler-
ator’s memory, and the second partitions the moved data
into smaller GEMMs to fit the systolic array, trying to
maximize its usage.

• parallel accumulations: denotes how many output
patches are accumulated simultaneously in the accumu-
lator, before moving them out. Modifies the position of
the move.out instruction in the generated code.

• apply double buffer: represents if double buffering
should be applied on the move.in of data, weights, both or
none. Takes into account the bank size of the scratchpad,

Import
TFLite
model

qnn.requantize

qnn.dense

nn.bias_add

qnn.requantize

qnn.dequantize

nn.softmax

Input Dense
weights Dense bias

Gemmini's
preprocess

pass
contrib.gemmini.gemm

qnn.dequantize

gemmini

cpu

qnn.requantize
cpu

Input Dense
weights Dense bias

gemm C function

dequantize C function

requantize C function

main()

nn.softmax
cpu

softmax C function

Generated C project

TVM's
build

TVM IRModule

TVM IRModule

Figure 2: Integration workflow example for a neural network formed by a fully connected layer and a softmax layer

so that double-buffered data is written to different banks,
thus preventing bank access conflict.

• exchange axis: allows to reorder the computation of
axis M and N, useful when M and N are not equal.

• WS/OS: if supported by the accelerator, configures the
systolic array to work on output stationary mode or
weight stationary mode [18].

• mvout big block: if supported by the accelerator, en-
ables the generation of move.out instructions which move
more than DIM ×DIM size patches. Useful to explore
the trade-off between burst of smaller move.out instruc-
tions versus bigger instructions.

III. INTEGRATING GEMMINI INTO TVM
To validate the aforementioned schedule search space, the

TVM [7] framework was chosen to take advantage of its
AutoTVM module. This auto-tuning process goes over the
parameter search space, measures each configuration on phys-
ical hardware, and exports the best schedule configuration. To
avoid an infeasible amount of measurements, XGB model-
based tuners are available [19].

The Gemmini [3] systolic array-based accelerator was se-
lected as a test platform because of its open-source nature.
Gemmini was developed by the UC Berkeley and is part of the
Chipyard ecosystem. It works in a tightly-coupled manner with
a RISC-V CPU, using the Rocket Chip Coprocessor (RoCC)
interface to control the accelerator with help from custom
instructions.

Gemmini uses a systolic array of DIM ×DIM multiply-
and-accumulate (MAC) processing elements to perform matrix
multiplications. The data is consumed from a scratchpad made
up of banked SRAMs and is stored in a series of banked
SRAMs equipped with adder units known as the accumulator.
A DMA engine connected to the System Bus (directly to the
L2 cache) is used to get data in and out of the accelerator’s
SRAMs. Gemmini is also able to apply scaling factors during
the move in and out of data, and also other common operations
like ReLu or max pooling.

Gemmini’s RoCC instructions can be grouped into the
following categories:
• Configuration: these instructions configure the input, out-

put and execution pipelines of the accelerator.
• Move: these instructions move specific amounts of rows

and columns of data into the SRAM or out into the
DRAM.

• Execution: dispatch the actual execution of the DIM ×
DIM GEMM to the systolic array.

• Flush and fence: general maintenance instructions.
• Loop: ”CISC” type instructions for commonly used oper-

ations. They take away the burden of manually scheduling
the intrinsic instructions by generating them directly
on the hardware using FSMs. Gemmini developers also
provide some handcrafted layer-wise C functions, which
internally call these loop instructions.

Gemmini uses a decoupled access-execute architecture, with
dedicated controllers to manage the move.in, execute and
move.out instructions independently. A ROB is included to
detect hazards between instructions and to issue them to their
respective controller.

Fig. 2 shows how the developed integration between TVM
and Gemmini works. First, the TensorFlow Lite quantized
model is imported. Here, the model is transformed into the
Relay IR dataflow graph representation of TVM. Then, pattern
matching is used to replace subgraphs of operations with
custom operators supported by Gemmini. These operators
consist of a computation definition and its schedule: a set of
parametrized loop transformations. For the GEMM operator,
two different schedules were developed: one that generates the
calls to the intrinsic instructions parametrized as presented in
Section II, and one that replaces the entire loops with a call
to the default handcrafted layer-wise C function.

During the schedule transformation, several pragmas are
used to tag specific loops and then replace them with the
Gemmini intrinsic instructions in the following compilation
pass. The tensorization feature of TVM was used to insert the
two instructions (preload and compute) needed by Gemmini
to compute a GEMM. TVM’s C code generator was used to
create the source code file that executes the operators, and the
standard header file provided by Gemmini was included in
the generated file by TVM to correctly reference Gemmini’s
instruction macros.

A. Quantization management

TensorFlow Lite’s quantization scheme [20] uses symmetric
quantization for the weights and biases of each layer, and
asymmetric for the input and output of each layer 2. Because
the multiplication of two quantized matrices with different
zero points is not straightforward, correction terms have to be

2see https://www.tensorflow.org/lite/performance/quantization spec?hl=en

https://www.tensorflow.org/lite/performance/quantization_spec?hl=en

16 32 64 128 256 512 1024
0

20

40

60

Workload size

G
O

Ps
[9] no L2 [9] L2

Ours no L2 Ours L2

(a) Best schedules found by AutoTVM in our implementation against
previous work.

16 32 64 128 256 512 1024
0

20

40

60

Workload size

G
O

Ps

CISC no L2 CISC L2

Ours no L2 Ours L2

(b) Best schedules found by AutoTVM in our implementation against
the default ”CISC instruction” based schedules.

Figure 3: Results across different GEMM workloads. For each workload, M = N = K = workload size

subtracted to get the correct result as seen in Eq. (1). Finally,
to transform Q′C into the output quantization regime of the
layer, a requantization operator is inserted by TVM described
by Eq. (2).

An easy approach would be to accelerate only the matrix
multiplication using the systolic array (the term 1 of Eq. (1))
and then execute the correction terms subtraction and the
re-quantization operator on the CPU. But this is slow and
doesn’t exploit the benefits of TVM’s compilation framework,
so a transformation of the GEMM operation is done during
the compilation pass, allowing TVM to fold the remaining
constants into the bias of the layer. The final proposed solution
for a quantized matrix multiplication with bias addition is de-
scribed in Eq. (3) and (4). The scaling factor sd/sc is inserted
as output scaling factor in the configuration of the move.out
instruction of Gemmini, thus achieving the acceleration of the
entire operator, without extra tensor operations executed on
the CPU.

Q
′
C(m,n)

=

k∑
0

(
QA(m,k)

− zpa

)
∗QB(k,n)

=

k∑
0

QA(m,k)
∗QB(k,n)

−
k∑
0

zpa ∗QB(k,n)
(1)

QC = zpc +
sd

sc
∗Q′C (2)

QC(m,n)
=

sd

sc

[(
k∑
0

QA(m,k)
∗QB(k,n)

)
+ Q

′
D(m,n)

]
(3)

Q
′
D(m,n)

= QD(m,n)
−

k∑
0

zpa ∗QB(k,n)
+

sd

sc
∗ zpc (4)

IV. EXPERIMENTS

Table I: Selected Baidu DeepBench workloads

Id M N K

15 64 1 1216
49 128 1 1024
63 512 1 512
73 512 2 512
84 1024 4 512

15 49 63 73 84
0
2
4
6
8

Id

G
O

Ps

Default no L2 Default L2

Ours no L2 Ours L2

Figure 4: Best schedules found by AutoTVM for the Baidu
DeepBench dataset using our implementation.

In order to be able to compare our results against the ones
reported by [9], our test setup was also built using the Rocket
Core [21] together with a 16× 16 Gemmini accelerator, with
a 256 KB scratchpad (4 SRAM banks with 4096 rows each)
and a 64 KB accumulator (1 SRAM bank with 1024 rows).
The inputs and weights are represented using 8 bits and the
accumulated values using 32 bits. In the implemented design
which uses the L2 cache, the SiFive inclusive L2 cache was
used. Like the original paper, the resulting hardware was also
implemented for a Xilinx Zynq UltraScale+ ZCU102 FPGA
running at 100 MHz. The only difference between our setup
and the one from [9] is the size of the L2 cache because they
did not report the selected size. In our work, the default size
used in the Chipyard project was selected: 512 KB.

Fig. 3 presents the best schedule performance found by
AutoTVM, and compares it with the previous work and the
default Gemmini schedules. An XGB tuner [19] with early
stopping equal to 500 iterations was used to traverse the search
space. The amount of operations for a generic GEMM of
form C[M,N] = A[M,K] × B[K,N] + D[M,N] was defined as
OP = 2×M ×N ×K +M ×N .

Although Fig. 3b shows that our AutoTVM schedules are
better than the CISC-based schedules for almost all workloads,
it fails to find better schedules for workloads 256 and 512
when the L2 cache is activated. There are two possible
explanations for this behaviour. The first one would be that the
XGB tuner is stuck in a local optimum, but this was verified to
not be the case by executing an exhaustive grid-search of all
the schedule parameter search space: the XGB found schedules
are indeed the best possible schedules our implementation can
generate for that workloads. The second possible explanation
lies in a load balancing feature of the Gemmini’s CISC

instructions. The hardware FSMs monitor the proportion of
each instruction type in the ROB and can pause the generation
of each kind of instruction, to maximize the overlap between
move and execute operations. This behaviour can not yet be
replicated using our TVM integration, and further work needs
to be done to analyse how to implement a similar feature.

To show the effectiveness of this schedule search space on
real-world examples, a set of dense layer workflows taken
from the Baidu DeepBench dataset [22] were selected (Table
I). Fig. 4 presents the result of the AutoTVM tuning process
executed on these workloads, using the same tuner parameters
and FPGA bitstreams as in the previous measurements.

V. CONCLUSIONS

This work proposed a schedule parameter space for a
GEMM tensor operation. The proposed schedule was config-
ured into the TVM deep learning compiler, and integrated
with the Gemmini systolic array hardware accelerator. We
demonstrate that this schedule parameter space allows the
autotuning process to find faster schedules than previous
work, and also faster schedules than the hardcoded schedules
provided by the expert developers of Gemmini on almost all
tested workloads.

Future works will also add other operators to the integration,
like convolutions and depthwise convolutions. The results
of the acceleration of entire neural networks will also be
presented.

This work did not try to improve how much time the
autotuning process takes. The search space of scheduling
parameters was traversed using an XGB tuner approach, which
can be improved to converge faster as shown in [23]. In
future works, optimization techniques to speed up this process
should be investigated, to be able to find the best scheduling
parameters using the minimum amount of actual hardware
measurements.

REFERENCES

[1] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt,
J. Wright, J. Zhao, Y. S. Shao, K. Asanović, and B. Nikolić, “Chipyard:
Integrated design, simulation, and implementation framework for custom
socs,” IEEE Micro, vol. 40, no. 4, pp. 10–21, 2020.

[2] A. Kurth, B. Forsberg, and L. Benini, “Herov2: Full-stack open-
source research platform for heterogeneous computing,” CoRR, vol.
abs/2201.03861, 2022. [Online]. Available: https://arxiv.org/abs/2201.
03861

[3] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, H. Mao, A. Ou, C. Schmidt, S. Steffl, J. Wright,
I. Stoica, J. Ragan-Kelley, K. Asanovic, B. Nikolic, and Y. S. Shao,
“Gemmini: Enabling systematic deep-learning architecture evaluation
via full-stack integration,” in Proceedings of the 58th Annual Design
Automation Conference (DAC), 2021.

[4] T. Moreau, T. Chen, L. Vega, J. Roesch, E. Yan, L. Zheng,
J. Fromm, Z. Jiang, L. Ceze, C. Guestrin, and A. Krishnamurthy, “A
hardware-software blueprint for flexible deep learning specialization,”
7 2018. [Online]. Available: http://arxiv.org/abs/1807.04188

[5] G. Zhou, J. Zhou, and H. Lin, “Research on nvidia deep learning
accelerator,” in 2018 12th IEEE International Conference on Anti-
counterfeiting, Security, and Identification (ASID), 2018, pp. 192–195.

[6] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali,
Y. Wang, J. Yang, D. Zhuo, K. Sen, J. E. Gonzalez, and I. Stoica,
“Ansor : Generating high-performance tensor programs for deep
learning,” CoRR, vol. abs/2006.06762, 2020. [Online]. Available:
https://arxiv.org/abs/2006.06762

[7] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu,
L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM: end-to-end
optimization stack for deep learning,” CoRR, vol. abs/1802.04799,
2018. [Online]. Available: http://arxiv.org/abs/1802.04799

[8] S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “Flextensor:
An automatic schedule exploration and optimization framework for
tensor computation on heterogeneous system,” in Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
859–873. [Online]. Available: https://doi.org/10.1145/3373376.3378508

[9] P. Xu and Y. Liang, “Automatic code generation for rocket chip rocc
accelerators,” CARRV, 2020.

[10] Kung, “Why systolic architectures?” Computer, vol. 15, pp. 37–46, 1
1982. [Online]. Available: http://ieeexplore.ieee.org/document/1653825/

[11] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, 2017.

[12] Y. H. Chen, T. J. Yang, J. S. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
pp. 292–308, 6 2019.

[13] Z.-G. Liu, P. N. Whatmough, and M. Mattina, “Systolic tensor
array: An efficient structured-sparse gemm accelerator for mobile cnn
inference,” 5 2020. [Online]. Available: http://arxiv.org/abs/2005.08098

[14] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,
and J. Cong, “Automated systolic array architecture synthesis for high
throughput cnn inference on fpgas,” vol. Part 128280, 2017.

[15] R. Xu, S. Ma, Y. Wang, X. Chen, and Y. Guo, “Configurable multi-
directional systolic array architecture for convolutional neural networks,”
ACM Transactions on Architecture and Code Optimization, vol. 18,
2021.

[16] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. luc Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter
performance analysis of a tensor processing unit,” ACM SIGARCH
Computer Architecture News, vol. 45, 2017.

[17] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang,
and H. Yang, “Angel-eye: A complete design flow for mapping cnn
onto embedded fpga,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, 2018.

[18] A. Samajdar, Y. Zhu, P. N. Whatmough, M. Mattina, and T. Krishna,
“Scale-sim: Systolic CNN accelerator,” CoRR, vol. abs/1811.02883,
2018. [Online]. Available: http://arxiv.org/abs/1811.02883

[19] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin,
and A. Krishnamurthy, “Learning to optimize tensor programs,” vol.
2018-December, 2018.

[20] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” CoRR, vol. abs/1712.05877,
2017. [Online]. Available: http://arxiv.org/abs/1712.05877

[21] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas,
A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson, B. Richards,
C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The rocket chip
generator,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-17, Apr 2016. [Online]. Available: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[22] S. Narang and G. Diamos, “Baidu deepbench,” GitHub Repository, 2017.
[23] D. Rieber, M. Reiber, O. Bringmann, and H. Fröning, “Hw-

aware initialization of dnn auto-tuning to improve exploration time and
robustness,” 5 2022. [Online]. Available: http://arxiv.org/abs/2205.15568

https://arxiv.org/abs/2201.03861
https://arxiv.org/abs/2201.03861
http://arxiv.org/abs/1807.04188
https://arxiv.org/abs/2006.06762
http://arxiv.org/abs/1802.04799
https://doi.org/10.1145/3373376.3378508
http://ieeexplore.ieee.org/document/1653825/
http://arxiv.org/abs/2005.08098
http://arxiv.org/abs/1811.02883
http://arxiv.org/abs/1712.05877
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://arxiv.org/abs/2205.15568

	Introduction
	Scheduling a GEMM operation on a systolic array
	Integrating Gemmini into TVM
	Quantization management

	Experiments
	Conclusions
	References

